

Iteration of critically unbounded meromorphic map

Subhasis Ghora, Tarakanta Nayak

Geometry and Dynamics Laboratory, School of Basic Sciences Indian Institute of Technology Bhubaneswar

Abstract

Dynamics of $f_{\lambda}(z) = \lambda + z + tanz$ are investigated for each $\lambda \in \mathbb{C}$. It is proved that

- for each $\lambda \in \mathbb{R}$, the Fatou set, $\mathscr{F}(f_{\lambda})$ consist of only two components, one is the upper half plane and another is the lower half plane and both components are completely invariant Baker domains and the Julia set, $\mathscr{F}(f_{\lambda})$ is $\mathbb{R} \cup \{\infty\}$.
- It is evinced that for each $\lambda \in \mathbb{C}$, $\Im(\lambda) \geq 0$, $\mathscr{F}(f_{\lambda})$ has a completely invariant Baker domain containing the upper half plane.
- It is shown that for each $\lambda \in \mathbb{C}$ with $|2 + \lambda^2| < 1$, there are infinitely many unbounded attracting domains in the lower half plane.

Introduction

Let $f : \to \widehat{\mathbb{C}}$ be a transcendental meromorphic function.

Definition

- The set of points $z \in \widehat{\mathbb{C}}$ for which the sequence of iterates $\{f^n(z)\}_{n=0}^{\infty}$ is defined is called the Fatou set of f.
- The Julia set is the complement of the Fatou set of f in $\widehat{\mathbb{C}}$. Details about the Fatou set and the Julia set can be found in [1].

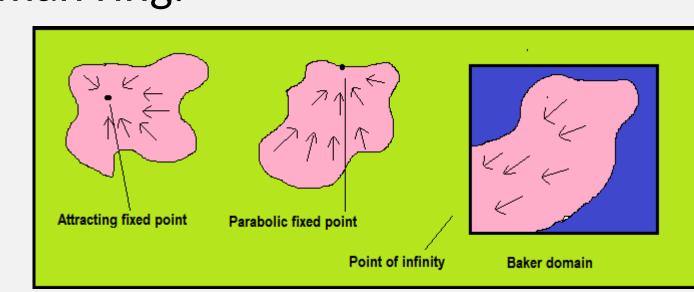
Definition

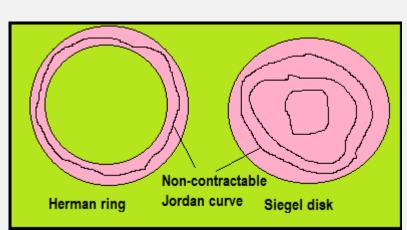
A maximal connected subset of the Fatou set is called a Fatou component.

Periodic Fatou components

A periodic Fatou component can be of 5 types

- 1. attracting domain
- 2. parabolic domain
- 3. Baker domain
- 4. Siegel disk
- 5. Herman ring.





A Fatou component U is said to be completely invariant if U is forward invariant as well as backward invariant i.e. $f(U) \subseteq U$ and $f^{-1}(U) \subseteq U$ [2].

Basic properties of f_{λ}

- The critical points of f_{λ} are $z_k = \frac{\pi}{2} + \pi k + i \sinh^{-1} 1$, when k is odd and $w_k = \frac{\pi}{2} + \pi k i \sinh^{-1} 1$, when k is even.
- For each $\lambda \in \mathbb{C} \setminus \{\pm i\}$ the fixed points of g_{λ} are all together attracting or repelling or parabolic.
- The functions f_{λ} and $f_{-\lambda}$ are conformally conjugate.

Results

For $\lambda \in \mathbb{R}$, we have completely described the dynamics of f_{λ} .

Theorem

For each $\lambda \in \mathbb{R}$, $\mathscr{F}(f_{\lambda})$ consist of only two components, one is the upper half plane and another is the lower half plane and both components are completely invariant Baker domains and $\mathscr{J}(f_{\lambda}) = \mathbb{R} \cup \{\infty\}$.

Existence of a completely invariant Fatou component is evident from the next result.

Theorem

For each $\lambda \in \mathbb{C}$ such that $\Im(\lambda) \geq 0$, $\mathscr{F}(f_{\lambda})$ has a completely invariant Baker domain containing the upper half plane.

Let P =

 $\{\lambda \in \mathbb{C} : all fixed points of f_{\lambda} are attracting \}.$

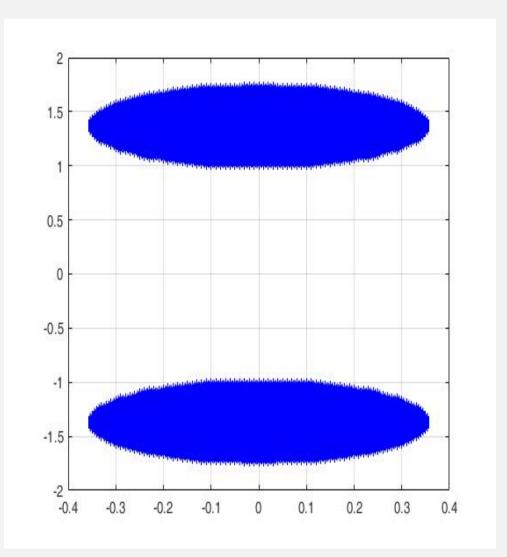


Figure: Image of P

Results

Existence of all possible periodic Fatou components are described whenever the fixed points of f_{λ} are attracting.

Theorem

For each $\lambda \in \mathbb{C}$ such that $|2 + \lambda^2| < 1$, $\mathscr{F}(f_{\lambda})$ has a completely invariant Baker domain containing the upper half plane. Further, there are infinitely many unbounded attracting domains in the lower half plane.

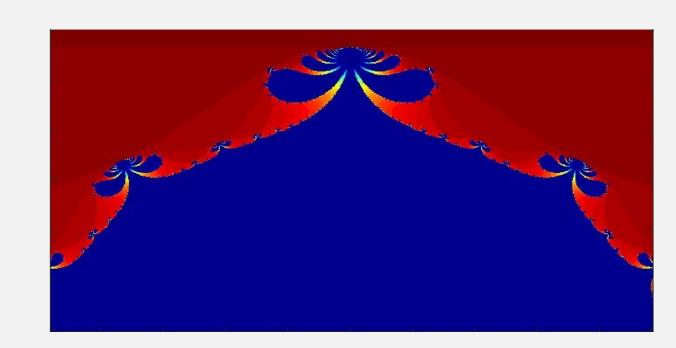


Figure: Blue portion is the unbounded attracting domain and the upper one is the CIFC

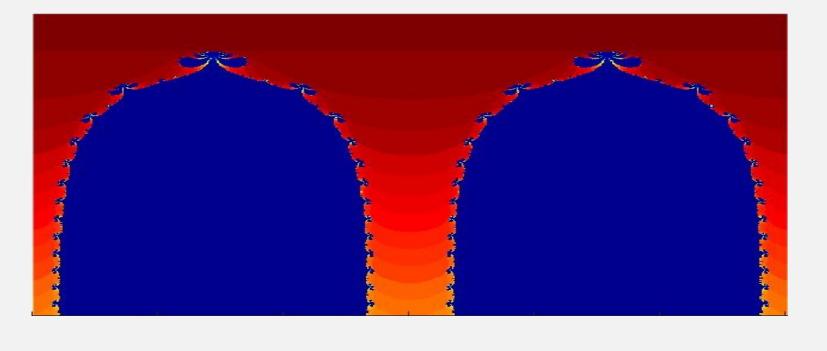


Figure: No. of such attracting domain is infinity

References

[1] Walter Bergweiler.

Iteration of meromorphic functions.

Bulletin of the American Mathematical Society,
29(2):151–189, Jan 1993.

[2] C.L. Cao and Y.F. Wang.On completely invariant fatou components.Ark. Mat., 41(2):151–189, 2003.